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A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) code is proposed based on the fi-

nite field multiplicative group, which has easier construction, more flexible code-length code-rate adjustment and 

lower encoding/decoding complexity. Moreover, a regular QC-LDPC(5334,4962) code is constructed. The simulation 

results show that the constructed QC-LDPC(5334,4962) code can gain better error correction performance under the 

condition of the additive white Gaussian noise (AWGN) channel with iterative decoding sum-product algorithm (SPA). 

At the bit error rate (BER) of 10-6, the net coding gain (NCG) of the constructed QC-LDPC(5334,4962) code is 1.8 dB, 

0.9 dB and 0.2 dB more than that of the classic RS(255,239) code in ITU-T G.975, the LDPC(32640,30592) code in 

ITU-T G.975.1 and the SCG-LDPC(3969,3720) code constructed by the random method, respectively. So it is more 

suitable for optical communication systems. 
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The low-density parity-check (LDPC) code is discovered 

by Gallager[1] in 1962, and is also a kind of the linear 

block codes which can approach the Shannon limit[2,3]. 

Because of its low encoding/decoding complexity and 

flexible code-length/code-rate adjustment, the LDPC 

code is widely used in optical communication system, 

mobile communication system, satellite communication 

system and storage system[2]. 

Quasi-cyclic low-density parity-check (QC-LDPC) 

code is a kind of LDPC code whose sub-matrix of check 

matrix H is the circulant permutation matrix (CPM) or 

zero matrix[2,3]. The CPM is a kind of square matrix with 

the fixed row weight and column weight. Every row of 

CPM is formed by the cyclic shift of upper row, and the 

first row is formed by the last one. Similarly, every col-

umn is also formed by the cyclic shift of former column, 

and the first column is formed by the last one. The spe-

cial structure of CPM makes it easy to achieve the en-

coding process through the simple cyclic shift registers 

with the linear complexity[2,4]. So the research of the con-

struction for QC-LDPC codes has become a hot spot in 

optical communication systems. 

The construction methods of LDPC codes can be clas-

sified into two general categories[5,6] of pseudo random 

construction method and structured construction method. 

The construction method of QC-LDPC codes based on 

the CPM of finite field is an effective construction method 

in structured QC-LDPC codes. 

According to the transmission characteristics of opti-

cal communication systems, a novel construction method 

of QC-LDPC codes based on finite field multiplicative 

group is proposed and studied in this paper. Furthermore, 

a regular QC-LDPC(5334,4962) code is constructed, and 

the error correction performance of it and other three 

codes is comparatively simulated and analyzed. 

Consider the finite field as GF(q)[7,8], where q is the 

power of a prime. Let α be a primitive element of GF(q), 

{α
–∞≡0, α

0=1, α,…, α
q-2

 } can form all the elements of 

GF(q), and αq-1=1. The q–1 non-zero elements in GF(q) 

field form the multiplicative group of GF(q) under the 

multiplicative operation. For each non-zero element α
i 

with 0≤i≤q–2, form a (q–1)-tuple over GF(2) as z(αi)=(z0, 

z1,…, zq–2), whose components correspond to the q–1 non-

zero elements of GF(q), where the ith component zi=1 

and all the other q–2 components are equal to 0. The 

(q–1)-tuple z(αi) with a single 1-component is referred as 

the location vector of αi with respect to the multiplicative 

group of GF(q). z(αi) is called as the M-location vector 

of αi, where M stands for “multiplicative”. The location 

vector z(0) of the 0 element of GF(q) is defined as the 

all-zero (q–1)-tuple of (0,0,…,0). 

Let γ be a non-zero element in GF(q), then the 

M-location vector z(αγ) of αγ is the right cyclic shift of 

the M-location vector z(γ) of γ. Form a (q–1)×(q–1) ma-
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trix A over GF(2) with the M-location vectors of γ, 

αγ,…,αq–2
γ as rows. A is a circulant permutation matrix, 

but each row of A is a right cyclic shift of the row above 

it, and the first row is the right cyclic shift of the last row. 

The innate characteristic of constructing a QC-LDPC 

code is the construction of its parity check matrix H. 

Using general finite field method to construct QC-LDPC 

codes is mainly divided into three steps: construct basic 

matrix, (q–1)-fold vertical expansion, and (q–1)-fold 

horizontal expansion. The performance of the code is 

determined by the structure of the basic matrix. So the 

core target is to construct a basic matrix. If there is no 

zero matrix in the basic matrix, the constructed code is 

called as the regular QC-LDPC code, otherwise, the code 

is called as the irregular QC-LDPC code. A novel con-

struction method for QC-LDPC codes based on the finite 

field multiplicative groups is introduced as follows in 

detail. 

Let α be a primitive element in GF(q), where q=2p, p 

is a positive integer. For 0≤i≤q–1, αi
( )GF q∈ , the set {α

0, 

α
1,…, αq-2} forms a multiplicative group of the finite field. 

(αi)-1 is the inverse element of αi, and the inverse element 

of αi is unique. It is clear that (αi)-1 ( )GF q∈  froms the 

property of finite field. That is to say, the set {(α0)-1, 

(α1)-1,…, (αq-2)-1} also forms the elements of finite field. 

Then form a (q–1)×(q–1) basic matrix W. For any 0≤i, 

j≤q–2, the elements of the basic matrix are determined 

by wi,j=α
i +(αi)-1, so we can obtain 

0 0 1 0 1 1 0 2 1

1 0 1 1 1 1 1 2 1

2 0 1 2 1 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )
=

( ) ( ) ( )

q

q

q q q q

α α α α α α
α α α α α α

α α α α α α

− − − −

− − − −

− − − − − − −

+ + +⎡ ⎤
⎢ ⎥+ + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

W

�

�

� � � �

�

.(1) 

The matrix has the following structural properties. 

First, each row (column) has and only has one 0 element, 

while i+j= q–1, wi,j=0. Second, the elements in each row 

(column) are different in GF(q). Third, the elements at 

the same position but in different row (column) are also 

different. 

For each row of W with 0≤i≤q–2, we expand it verti-

cally into a (q–1)×(q–1) matrix Vi over GF(q) by multi-

plying it with α0, α,…, αq-2 as: 

0 0 0

,0 ,1 , 2

1 1 1

,0 ,1 , 2

2 2 2

,0 ,1 , 2

i i i q

i i i q

i

q q q

i i i q

W W W

W W W

W W W

α α α
α α α

α α α

−

−

− − −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

V

�

�

� � � �

�

.        (2) 

The same procedure is taken to each row of W, then a 

(q–1)2×(q–1)-tuple vertical expansion matrix V is ob-

tained. 

For 0≤i≤q–2, replacing each entry of Vi by its 

M-location vector, a (q–1)×(q–1)2 matrix over GF(2) is 

obtained, and each entry of Vi consists of q–1 M-location 

vectors Ai,j. Then the complete 2 2( 1) ( 1)q q− × − -tuple 

parity check matrix H over (2)GF is obtained as 

0,0 0,1 0, 20

1 1,0 1,1 1, 2

2 2,0 2,1 2, 2

q

q

q q q q q

A A AH

H A A A

H A A A

−

−

− − − − −
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

= =H

�

�
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�

.       (3) 

If there are short cycles in check matrix, the updated 

message will be related during the iterative process. It 

makes the convergence rate slow or even not convergent, 

and then impacts the decoding performance. So we 

should avoid the girth-4 phenomenon when check matrix 

is constructed. That is to say, we should follow the 

row-column (RC) constraint. The RC constraint points 

out that in different rows (columns) of check matrix, 

there shouldn’t be more than one “1” in the same posi-

tion. Simulation result shows that the check matrix con-

structed by the proposed method meets the RC con-

straint. 

For any pair (γ, ρ) of integers with 1≤γ≤q–2 and 

1≤ρ≤q–2, let H(γ, ρ) be a γ×ρ submatrix of H. H(γ, ρ) is a 

γ(q–1)×ρ(q–1) matrix over GF(2). Since it is a submatrix 

of H, it also meets the RC constraint. The null space of 

H(γ, ρ) gives a QC-LDPC code Cqc. The length of the 

code is ρ(q–1), and the rate is at least (ρ–γ)/ρ. Also, its 

girth is at least 6. If the column weight and row weight 

are constant, and there is no zero matrix in H(γ, ρ), the 

constructed code is a regular QC-LDPC code. Otherwise, 

the code is an irregular QC-LDPC code. 

The following construction principles should be taken 

into consideration when constructing regular LDPC 

codes for optical communication systems[9-12]. ①There 

ought to be low error floor or no error floor at best. ②

The net coding gain (NCG) should be high, and the re-

dundancy of the code type should be low. ③The code-

word length cannot be too long, the time delay arisen 

from encoding/decoding should not be too much, and the 

software/hardware implementation should be favorable. 

④The constructed LDPC codes should have no girth-4 

to suffice the requirements of the Steiner limit, making 

the decoding of the LPDC code with better decoding 

constringency. ⑤The constructed LDPC codes should 

have lower density, that is, in the parity-check matrix H 

of LDPC codes, the number of ones should be absolutely 

less than that of zeros. In this way, there is less calcula-

tion each time when iteratively decoding and the decod-

ing complexity is reduced. 

Based on the above principles, the basic simulation 

environment under the condition of GF(2), binary phase 

shift keying (BPSK) modulation and additive white 

Gaussian noise (AWGN) channel with decoding 

sum-product algorithm (SPA) at the sixteen iteration is 

used in this paper. Considering the characteristics of op-

tical communication systems and the requirements of the 

higher code-rate for QC-LDPC codes, choose the pa-

rameter q=27=128, column weight γ=3 and row weight 

ρ=42. Construct a 127×127 matrix of H. Then take a 

3×42 submatrix from the left top corner of H. The null 
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space of the taken check matrix gives a regular QC- 

LDPC(5334,4962) code with the code rate of 0.937. 

The relevant performance curve between the bit error 

rate (BER) and signal-to-noise ratio (SNR) for the regu-

lar QC-LDPC(5334,4962) code can be achieved by the 

Matlab programming. Then compare the error correction 

performance of QC-LDPC(5334,4962) code and other codes. 

Fig.1 shows the error correction performance of QC-LDPC 

(5334,4962) code and the classic RS(255,239) code in 

ITU-T G.975[13] as well as the LDPC(32640,30592) code 

in ITU-T G.975.1[14] and SCG-LDPC(3969,3720) code[15] 

constructed by the random construction method. 

From Fig.1, it can be seen that NCG of the constructed 

QC-LDPC(5334,4962) code is respectively 1.8 dB, 0.9 

dB and 0.2 dB more than that of the classic RS(255,239) 

code in ITU-T G.975, the LDPC(32640, 30592) code in 

ITU-T G.975.1 and the SCG-LDPC(3969, 3720) code 

constructed by the random method at the BER of 10-6. 

 

 

Fig.1 The error correction performance comparison of 

QC-LDPC (5334,4962) code and other codes 
 

A novel construction method of QC-LDPC codes is 

proposed based on the finite field multiplicative group in 

this paper. This construction method has advantages of 

easier construction, more flexible code-length code-rate 

adjustment and lower encoding/decoding complexity. 

Moreover, a regular QC-LDPC (5334,4962) code is con-

structed by this construction method. The simulation 

results show that the error correction performance of the 

regular QC-LDPC(5334,4962) code is better than that of 

the classic RS(255,239) code and LDPC (32640,30592)  

code, which are widely used in optical communication 

systems, as well as the SCG-LDPC(3969, 3720) code con-

structed by the random construction method. Therefore, 

the constructed regular QC-LDPC (5334,4962) code can 

be more suitable for optical communication systems. 
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